One-key USB-HID

General discussions about V-USB, our firmware-only implementation of a low speed USB device on Atmel's AVR microcontrollers
Post Reply
ranstam
Posts: 1
Joined: Tue Apr 21, 2009 2:05 am

One-key USB-HID

Post by ranstam » Tue Apr 21, 2009 2:21 am

Hi!

Im new at USB, but am trying to get my Atmega16 to work as a Onekey-keyboard. I downloadet the project from the examples page, but i am having problems compiling it. My programing skills isnt directly pushing the envelope, so it might just be a noob error, but could you help me?

The code is

Code: Select all

/* Name: main.c
 * Project: 1-Key Keyboard
 * Author: Flip van den Berg - www.flipwork.nl
 * Creation Date: 2008-10-06
 * Based on AVR-USB drivers from Objective Developments - http://www.obdev.at/products/avrusb/index.html
 */

#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdlib.h>

#include "usbdrv.h"
#include "oddebug.h"

#define BUTTON_PORT PORTB       /* PORTx - register for button output */
#define BUTTON_PIN PINB         /* PINx - register for button input */
#define BUTTON_BIT PB3          /* bit for button input/output */

/* ------------------------------------------------------------------------- */

static uchar    reportBuffer[2];    /* buffer for HID reports */
static uchar    idleRate;           /* in 4 ms units */
static uchar    reportCount;      /* current report */

static uchar    buttonState;      /*  stores state of button */
static uchar   debounceTimeIsOver;   /* for switch debouncing */

/* ------------------------------------------------------------------------- */

PROGMEM char usbHidReportDescriptor[USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH] = { /* USB report descriptor */
    0x05, 0x01,                    // USAGE_PAGE (Generic Desktop)
    0x09, 0x06,                    // USAGE (Keyboard)
    0xa1, 0x01,                    // COLLECTION (Application)
    0x05, 0x07,                    //   USAGE_PAGE (Keyboard)
    0x19, 0xe0,                    //   USAGE_MINIMUM (Keyboard LeftControl)
    0x29, 0xe7,                    //   USAGE_MAXIMUM (Keyboard Right GUI)
    0x15, 0x00,                    //   LOGICAL_MINIMUM (0)
    0x25, 0x01,                    //   LOGICAL_MAXIMUM (1)
    0x75, 0x01,                    //   REPORT_SIZE (1)
    0x95, 0x08,                    //   REPORT_COUNT (8)
    0x81, 0x02,                    //   INPUT (Data,Var,Abs)
    0x95, 0x01,                    //   REPORT_COUNT (1)
    0x75, 0x08,                    //   REPORT_SIZE (8)
    0x25, 0x65,                    //   LOGICAL_MAXIMUM (101)
    0x19, 0x00,                    //   USAGE_MINIMUM (Reserved (no event indicated))
    0x29, 0x65,                    //   USAGE_MAXIMUM (Keyboard Application)
    0x81, 0x00,                    //   INPUT (Data,Ary,Abs)
    0xc0                           // END_COLLECTION
};
/* We use a simplifed keyboard report descriptor which does not support the
 * boot protocol. We don't allow setting status LEDs and we only allow one
 * simultaneous key press (except modifiers). We can therefore use short
 * 2 byte input reports.
 * The report descriptor has been created with usb.org's "HID Descriptor Tool"
 * which can be downloaded from http://www.usb.org/developers/hidpage/.
 * Redundant entries (such as LOGICAL_MINIMUM and USAGE_PAGE) have been omitted
 * for the second INPUT item.
 */
static void timerPoll(void)
{
   static unsigned int timerCnt;

    if(TIFR & (1 << TOV1)){
        TIFR = (1 << TOV1); /* clear overflow */
        if(++timerCnt >= 3){       // 3/63 sec delay for switch debouncing
         timerCnt = 0;
         debounceTimeIsOver = 1;
        }
    }
}

static void buildReport(void)
{
uchar key = 0; //if not changed by the if-statement below, then send an empty report

    if(reportCount == 0){
        if (buttonState == 1){ // if button is not pressed
      key = 0x30; // key = ]
      } else {
      key = 0x2F;  // key = [
       }
    }


   reportCount++;
    reportBuffer[0] = 0;    /* no modifiers */
    reportBuffer[1] = key;
}

static void checkButtonChange(void) {
   
   uchar tempButtonValue = bit_is_clear(BUTTON_PIN, BUTTON_BIT); //status of switch is stored in tempButtonValue

   if (tempButtonValue != buttonState && debounceTimeIsOver == 1){ //if status has changed and the debounce-delay is over
      buttonState = tempButtonValue;   // change buttonState to new state
      debounceTimeIsOver = 0;   // debounce timer starts
      reportCount = 0; // start report
   }
}

/* ------------------------------------------------------------------------- */

static void timerInit(void)
{
    TCCR1B = 0x0b;           /* select clock: 16.5M/1k -> overflow rate = 16.5M/256k = 62.94 Hz */
}

/* -------------------------------------------------------------------------------- */
/* ------------------------ interface to USB driver ------------------------ */
/* -------------------------------------------------------------------------------- */

uchar   usbFunctionSetup(uchar data[8])
{
usbRequest_t    *rq = (void *)data;

    usbMsgPtr = reportBuffer;
    if((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS){    /* class request type */
        if(rq->bRequest == USBRQ_HID_GET_REPORT){  /* wValue: ReportType (highbyte), ReportID (lowbyte) */
            /* we only have one report type, so don't look at wValue */
            buildReport();
            return sizeof(reportBuffer);
        }else if(rq->bRequest == USBRQ_HID_GET_IDLE){
            usbMsgPtr = &idleRate;
            return 1;
        }else if(rq->bRequest == USBRQ_HID_SET_IDLE){
            idleRate = rq->wValue.bytes[1];
        }
    }else{
        /* no vendor specific requests implemented */
    }
   return 0;
}

/* ------------------------------------------------------------------------- */
/* ------------------------ Oscillator Calibration ------------------------- */
/* ------------------------------------------------------------------------- */

/* Calibrate the RC oscillator to 8.25 MHz. The core clock of 16.5 MHz is
 * derived from the 66 MHz peripheral clock by dividing. Our timing reference
 * is the Start Of Frame signal (a single SE0 bit) available immediately after
 * a USB RESET. We first do a binary search for the OSCCAL value and then
 * optimize this value with a neighboorhod search.
 * This algorithm may also be used to calibrate the RC oscillator directly to
 * 12 MHz (no PLL involved, can therefore be used on almost ALL AVRs), but this
 * is wide outside the spec for the OSCCAL value and the required precision for
 * the 12 MHz clock! Use the RC oscillator calibrated to 12 MHz for
 * experimental purposes only!
 */
static void calibrateOscillator(void)
{
uchar       step = 128;
uchar       trialValue = 0, optimumValue;
int         x, optimumDev, targetValue = (unsigned)(1499 * (double)F_CPU / 10.5e6 + 0.5);

    /* do a binary search: */
    do{
        OSCCAL = trialValue + step;
        x = usbMeasureFrameLength();    /* proportional to current real frequency */
        if(x < targetValue)             /* frequency still too low */
            trialValue += step;
        step >>= 1;
    }while(step > 0);
    /* We have a precision of +/- 1 for optimum OSCCAL here */
    /* now do a neighborhood search for optimum value */
    optimumValue = trialValue;
    optimumDev = x; /* this is certainly far away from optimum */
    for(OSCCAL = trialValue - 1; OSCCAL <= trialValue + 1; OSCCAL++){
        x = usbMeasureFrameLength() - targetValue;
        if(x < 0)
            x = -x;
        if(x < optimumDev){
            optimumDev = x;
            optimumValue = OSCCAL;
        }
    }
    OSCCAL = optimumValue;
}
/*
Note: This calibration algorithm may try OSCCAL values of up to 192 even if
the optimum value is far below 192. It may therefore exceed the allowed clock
frequency of the CPU in low voltage designs!
You may replace this search algorithm with any other algorithm you like if
you have additional constraints such as a maximum CPU clock.
For version 5.x RC oscillators (those with a split range of 2x128 steps, e.g.
ATTiny25, ATTiny45, ATTiny85), it may be useful to search for the optimum in
both regions.
*/

void    usbEventResetReady(void)
{
    calibrateOscillator();
    eeprom_write_byte(0, OSCCAL);   /* store the calibrated value in EEPROM */
}

/* ------------------------------------------------------------------------- */
/* --------------------------------- main ---------------------------------- */
/* ------------------------------------------------------------------------- */

int main(void)
{
uchar   i;
uchar   calibrationValue;

    calibrationValue = eeprom_read_byte(0); /* calibration value from last time */
    if(calibrationValue != 0xff){
        OSCCAL = calibrationValue;
    }
   
   //odDebugInit();
    usbInit();
    usbDeviceDisconnect();  /* enforce re-enumeration, do this while interrupts are disabled! */
    i = 0;
    while(--i){             /* fake USB disconnect for > 250 ms */
        wdt_reset();
        _delay_ms(1);
    }
    usbDeviceConnect();

    wdt_enable(WDTO_1S);

   /* turn on internal pull-up resistor for the switch */
    BUTTON_PORT |= _BV(BUTTON_BIT);

    timerInit();

    sei();

    for(;;){    /* main event loop */
        wdt_reset();
        usbPoll();

      /* A USB keypress cycle is defined as a scancode being present in a report, and
      then absent from a later report. To press and release the Caps Lock key, instead of
      holding it down, we need to send the report with the Caps Lock scancode and
      then an empty report. */
      
      if(usbInterruptIsReady() && reportCount < 2){ /* we can send another key */
           buildReport();
              usbSetInterrupt(reportBuffer, sizeof(reportBuffer));
           }
        checkButtonChange();
      timerPoll();
   }
      return 0;
}



and i get the Errors

Code: Select all

Build started 21.4.2009 at 02:16:17
avr-gcc.exe  -mmcu=atmega16 -Wall -gdwarf-2 -O0 -MD -MP -MT main.o -MF dep/main.o.d  -c  ../main.c
In file included from ../main.c:13:
c:/winavr-20090313/lib/gcc/../../avr/include/util/delay.h:85:3: warning: #warning "F_CPU not defined for <util/delay.h>"
c:/winavr-20090313/lib/gcc/../../avr/include/util/delay.h:90:3: warning: #warning "Compiler optimizations disabled; functions from <util/delay.h> won't work as designed"
avr-gcc.exe -mmcu=atmega16  main.o usbdrv.o oddebug.o     -o onek.elf
main.o: In function `calibrateOscillator':
C:\Documents and Settings\Alexander\Mina dokument\program\onek\default/../main.c:162: undefined reference to `usbMeasureFrameLength'
C:\Documents and Settings\Alexander\Mina dokument\program\onek\default/../main.c:172: undefined reference to `usbMeasureFrameLength'
usbdrv.o: In function `usbSetInterrupt':
C:\Documents and Settings\Alexander\Mina dokument\program\onek\default/../usbdrv.c:249: undefined reference to `usbCrc16Append'
usbdrv.o: In function `usbBuildTxBlock':
C:\Documents and Settings\Alexander\Mina dokument\program\onek\default/../usbdrv.c:484: undefined reference to `usbCrc16Append'
make: *** [onek.elf] Error 1
Build failed with 4 errors and 2 warnings...


I have added oddebug.c and usbdrv.c under sourcefiles
and iarcompat.h/oddebug.h/usbconfig-prototype.h/usbdrv.h under headerfiles.


What could be the reason that i get the "undefined reference"? error?



Help greately appreciated!

Regards
Alexander

tkerby
Posts: 7
Joined: Wed Apr 22, 2009 10:02 am

Re: One-key USB-HID

Post by tkerby » Wed Apr 22, 2009 12:15 pm

Try this makefile - I had some similar problems

Code: Select all

# Name: Makefile
# Project: 1 key keyboard
# Author:
# Creation Date: 2008-04-07
# Tabsize: 4
# Copyright:
# License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)

DEVICE  = attiny45
F_CPU   = 16500000   # in Hz
FUSE_L  = 0xc1
FUSE_H  = 0xdf
AVRDUDE = avrdude -c usbtiny -p $(DEVICE) # edit this line for your programmer

CFLAGS  = -Iusbdrv -I. -DDEBUG_LEVEL=0
OBJECTS = usbdrv/usbdrv.o usbdrv/usbdrvasm.o usbdrv/oddebug.o main.o

COMPILE = avr-gcc -Wall -Os -DF_CPU=$(F_CPU) $(CFLAGS) -mmcu=$(DEVICE)

##############################################################################
# Fuse values for particular devices
##############################################################################
# If your device is not listed here, go to
# http://palmavr.sourceforge.net/cgi-bin/fc.cgi
# and choose options for external crystal clock and no clock divider
#
################################## ATMega8 ##################################
# ATMega8 FUSE_L (Fuse low byte):
# 0x9f = 1 0 0 1   1 1 1 1
#        ^ ^ \ /   \--+--/
#        | |  |       +------- CKSEL 3..0 (external >8M crystal)
#        | |  +--------------- SUT 1..0 (crystal osc, BOD enabled)
#        | +------------------ BODEN (BrownOut Detector enabled)
#        +-------------------- BODLEVEL (2.7V)
# ATMega8 FUSE_H (Fuse high byte):
# 0xc9 = 1 1 0 0   1 0 0 1 <-- BOOTRST (boot reset vector at 0x0000)
#        ^ ^ ^ ^   ^ ^ ^------ BOOTSZ0
#        | | | |   | +-------- BOOTSZ1
#        | | | |   + --------- EESAVE (don't preserve EEPROM over chip erase)
#        | | | +-------------- CKOPT (full output swing)
#        | | +---------------- SPIEN (allow serial programming)
#        | +------------------ WDTON (WDT not always on)
#        +-------------------- RSTDISBL (reset pin is enabled)
#
############################## ATMega48/88/168 ##############################
# ATMega*8 FUSE_L (Fuse low byte):
# 0xdf = 1 1 0 1   1 1 1 1
#        ^ ^ \ /   \--+--/
#        | |  |       +------- CKSEL 3..0 (external >8M crystal)
#        | |  +--------------- SUT 1..0 (crystal osc, BOD enabled)
#        | +------------------ CKOUT (if 0: Clock output enabled)
#        +-------------------- CKDIV8 (if 0: divide by 8)
# ATMega*8 FUSE_H (Fuse high byte):
# 0xde = 1 1 0 1   1 1 1 0
#        ^ ^ ^ ^   ^ \-+-/
#        | | | |   |   +------ BODLEVEL 0..2 (110 = 1.8 V)
#        | | | |   + --------- EESAVE (preserve EEPROM over chip erase)
#        | | | +-------------- WDTON (if 0: watchdog always on)
#        | | +---------------- SPIEN (allow serial programming)
#        | +------------------ DWEN (debug wire enable)
#        +-------------------- RSTDISBL (reset pin is enabled)
#
############################## ATTiny25/45/85 ###############################
# ATMega*5 FUSE_L (Fuse low byte):
# 0xef = 1 1 1 0   1 1 1 1
#        ^ ^ \+/   \--+--/
#        | |  |       +------- CKSEL 3..0 (clock selection -> crystal @ 12 MHz)
#        | |  +--------------- SUT 1..0 (BOD enabled, fast rising power)
#        | +------------------ CKOUT (clock output on CKOUT pin -> disabled)
#        +-------------------- CKDIV8 (divide clock by 8 -> don't divide)
# ATMega*5 FUSE_H (Fuse high byte):
# 0xdd = 1 1 0 1   1 1 0 1
#        ^ ^ ^ ^   ^ \-+-/
#        | | | |   |   +------ BODLEVEL 2..0 (brownout trigger level -> 2.7V)
#        | | | |   +---------- EESAVE (preserve EEPROM on Chip Erase -> not preserved)
#        | | | +-------------- WDTON (watchdog timer always on -> disable)
#        | | +---------------- SPIEN (enable serial programming -> enabled)
#        | +------------------ DWEN (debug wire enable)
#        +-------------------- RSTDISBL (disable external reset -> enabled)
#
################################ ATTiny2313 #################################
# ATTiny2313 FUSE_L (Fuse low byte):
# 0xef = 1 1 1 0   1 1 1 1
#        ^ ^ \+/   \--+--/
#        | |  |       +------- CKSEL 3..0 (clock selection -> crystal @ 12 MHz)
#        | |  +--------------- SUT 1..0 (BOD enabled, fast rising power)
#        | +------------------ CKOUT (clock output on CKOUT pin -> disabled)
#        +-------------------- CKDIV8 (divide clock by 8 -> don't divide)
# ATTiny2313 FUSE_H (Fuse high byte):
# 0xdb = 1 1 0 1   1 0 1 1
#        ^ ^ ^ ^   \-+-/ ^
#        | | | |     |   +---- RSTDISBL (disable external reset -> enabled)
#        | | | |     +-------- BODLEVEL 2..0 (brownout trigger level -> 2.7V)
#        | | | +-------------- WDTON (watchdog timer always on -> disable)
#        | | +---------------- SPIEN (enable serial programming -> enabled)
#        | +------------------ EESAVE (preserve EEPROM on Chip Erase -> not preserved)
#        +-------------------- DWEN (debug wire enable)


# symbolic targets:
help:
   @echo "This Makefile has no default rule. Use one of the following:"
   @echo "make hex ....... to build main.hex"
   @echo "make program ... to flash fuses and firmware"
   @echo "make fuse ...... to flash the fuses"
   @echo "make flash ..... to flash the firmware (use this on metaboard)"
   @echo "make clean ..... to delete objects and hex file"

hex: main.hex

program: flash fuse

# rule for programming fuse bits:
fuse:
   @[ "$(FUSE_H)" != "" -a "$(FUSE_L)" != "" ] || \
      { echo "*** Edit Makefile and choose values for FUSE_L and FUSE_H!"; exit 1; }
   $(AVRDUDE) -U hfuse:w:$(FUSE_H):m -U lfuse:w:$(FUSE_L):m

# rule for uploading firmware:
flash: main.hex
   $(AVRDUDE) -U flash:w:main.hex:i

# rule for deleting dependent files (those which can be built by Make):
clean:
   rm -f main.hex main.lst main.obj main.cof main.list main.map main.eep.hex main.elf *.o usbdrv/*.o main.s usbdrv/oddebug.s usbdrv/usbdrv.s

# Generic rule for compiling C files:
.c.o:
   $(COMPILE) -c $< -o $@

# Generic rule for assembling Assembler source files:
.S.o:
   $(COMPILE) -x assembler-with-cpp -c $< -o $@
# "-x assembler-with-cpp" should not be necessary since this is the default
# file type for the .S (with capital S) extension. However, upper case
# characters are not always preserved on Windows. To ensure WinAVR
# compatibility define the file type manually.

# Generic rule for compiling C to assembler, used for debugging only.
.c.s:
   $(COMPILE) -S $< -o $@

# file targets:

# Since we don't want to ship the driver multipe times, we copy it into this project:
usbdrv:
   cp -r ../../../usbdrv .

main.elf: usbdrv $(OBJECTS)   # usbdrv dependency only needed because we copy it
   $(COMPILE) -o main.elf $(OBJECTS)

main.hex: main.elf
   rm -f main.hex main.eep.hex
   avr-objcopy -j .text -j .data -O ihex main.elf main.hex
   avr-size main.hex

# debugging targets:

disasm:   main.elf
   avr-objdump -d main.elf

cpp:
   $(COMPILE) -E main.c


I also updated to the latest v-usb and had to modify the main file and descriptors as follows.

Main.c

Code: Select all

/* Name: main.c
 * Project: 1-Key Keyboard
 * Author: Flip van den Berg - www.flipwork.nl
 * Creation Date: 2008-10-06
 * Based on AVR-USB drivers from Objective Developments - http://www.obdev.at/products/avrusb/index.html
 */

#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <util/delay.h>
#include <stdlib.h>

#include "usbdrv/usbdrv.h"
#include "usbdrv/oddebug.h"

#define BUTTON_PORT PORTB       /* PORTx - register for button output */
#define BUTTON_PIN PINB         /* PINx - register for button input */
#define BUTTON_BIT PB3          /* bit for button input/output */

/* ------------------------------------------------------------------------- */

static uchar    reportBuffer[2];    /* buffer for HID reports */
static uchar    idleRate;           /* in 4 ms units */
static uchar    reportCount;      /* current report */

static uchar    buttonState;      /*  stores state of button */
static uchar   debounceTimeIsOver;   /* for switch debouncing */

/* ------------------------------------------------------------------------- */

PROGMEM char usbHidReportDescriptor[USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH] = { /* USB report descriptor */
    0x05, 0x01,                    // USAGE_PAGE (Generic Desktop)
    0x09, 0x06,                    // USAGE (Keyboard)
    0xa1, 0x01,                    // COLLECTION (Application)
    0x05, 0x07,                    //   USAGE_PAGE (Keyboard)
    0x19, 0xe0,                    //   USAGE_MINIMUM (Keyboard LeftControl)
    0x29, 0xe7,                    //   USAGE_MAXIMUM (Keyboard Right GUI)
    0x15, 0x00,                    //   LOGICAL_MINIMUM (0)
    0x25, 0x01,                    //   LOGICAL_MAXIMUM (1)
    0x75, 0x01,                    //   REPORT_SIZE (1)
    0x95, 0x08,                    //   REPORT_COUNT (8)
    0x81, 0x02,                    //   INPUT (Data,Var,Abs)
    0x95, 0x01,                    //   REPORT_COUNT (1)
    0x75, 0x08,                    //   REPORT_SIZE (8)
    0x25, 0x65,                    //   LOGICAL_MAXIMUM (101)
    0x19, 0x00,                    //   USAGE_MINIMUM (Reserved (no event indicated))
    0x29, 0x65,                    //   USAGE_MAXIMUM (Keyboard Application)
    0x81, 0x00,                    //   INPUT (Data,Ary,Abs)
    0xc0                           // END_COLLECTION
};
/* We use a simplifed keyboard report descriptor which does not support the
 * boot protocol. We don't allow setting status LEDs and we only allow one
 * simultaneous key press (except modifiers). We can therefore use short
 * 2 byte input reports.
 * The report descriptor has been created with usb.org's "HID Descriptor Tool"
 * which can be downloaded from http://www.usb.org/developers/hidpage/.
 * Redundant entries (such as LOGICAL_MINIMUM and USAGE_PAGE) have been omitted
 * for the second INPUT item.
 */
static void timerPoll(void)
{
   static unsigned int timerCnt;

    if(TIFR & (1 << TOV1)){
        TIFR = (1 << TOV1); /* clear overflow */
        if(++timerCnt >= 3){       // 3/63 sec delay for switch debouncing
         timerCnt = 0;
         debounceTimeIsOver = 1;
        }
    }
}

static void buildReport(void)
{
uchar modifier = 0; //if not changed by the if-statement below, then send an empty report
uchar key = 0; //if not changed by the if-statement below, then send an empty report

    if(reportCount == 0){
        if (buttonState == 1){ // if button is not pressed
      modifier = 0x08; // modifier = gui button
      key = 0x0f; // key = L (lock)
      } else {
      modifier = 0x00; // modifier = None
      key = 0x00; // Empty report
       }
    }


   reportCount++;
    reportBuffer[0] = modifier;    /* no modifiers */
    reportBuffer[1] = key;
}

static void checkButtonChange(void) {
   
   uchar tempButtonValue = bit_is_clear(BUTTON_PIN, BUTTON_BIT); //status of switch is stored in tempButtonValue

   if (tempButtonValue != buttonState && debounceTimeIsOver == 1){ //if status has changed and the debounce-delay is over
      buttonState = tempButtonValue;   // change buttonState to new state
      debounceTimeIsOver = 0;   // debounce timer starts
      reportCount = 0; // start report
   }
}

/* ------------------------------------------------------------------------- */

static void timerInit(void)
{
    TCCR1 = 0x0b;           /* select clock: 16.5M/1k -> overflow rate = 16.5M/256k = 62.94 Hz */
}

/* -------------------------------------------------------------------------------- */
/* ------------------------ interface to USB driver ------------------------ */
/* -------------------------------------------------------------------------------- */

uchar   usbFunctionSetup(uchar data[8])
{
usbRequest_t    *rq = (void *)data;

    usbMsgPtr = reportBuffer;
    if((rq->bmRequestType & USBRQ_TYPE_MASK) == USBRQ_TYPE_CLASS){    /* class request type */
        if(rq->bRequest == USBRQ_HID_GET_REPORT){  /* wValue: ReportType (highbyte), ReportID (lowbyte) */
            /* we only have one report type, so don't look at wValue */
            buildReport();
            return sizeof(reportBuffer);
        }else if(rq->bRequest == USBRQ_HID_GET_IDLE){
            usbMsgPtr = &idleRate;
            return 1;
        }else if(rq->bRequest == USBRQ_HID_SET_IDLE){
            idleRate = rq->wValue.bytes[1];
        }
    }else{
        /* no vendor specific requests implemented */
    }
   return 0;
}

/* ------------------------------------------------------------------------- */
/* ------------------------ Oscillator Calibration ------------------------- */
/* ------------------------------------------------------------------------- */

/* Calibrate the RC oscillator. Our timing reference is the Start Of Frame
 * signal (a single SE0 bit) repeating every millisecond immediately after
 * a USB RESET. We first do a binary search for the OSCCAL value and then
 * optimize this value with a neighboorhod search.
 */
void    calibrateOscillator(void)
{
uchar       step = 128;
uchar       trialValue = 0, optimumValue;
int         x, optimumDev, targetValue = (unsigned)(1499 * (double)F_CPU / 10.5e6 + 0.5);

    /* do a binary search: */
    do{
        OSCCAL = trialValue + step;
        x = usbMeasureFrameLength();    /* proportional to current real frequency */
        if(x < targetValue)             /* frequency still too low */
            trialValue += step;
        step >>= 1;
    }while(step > 0);
    /* We have a precision of +/- 1 for optimum OSCCAL here */
    /* now do a neighborhood search for optimum value */
    optimumValue = trialValue;
    optimumDev = x; /* this is certainly far away from optimum */
    for(OSCCAL = trialValue - 1; OSCCAL <= trialValue + 1; OSCCAL++){
        x = usbMeasureFrameLength() - targetValue;
        if(x < 0)
            x = -x;
        if(x < optimumDev){
            optimumDev = x;
            optimumValue = OSCCAL;
        }
    }
    OSCCAL = optimumValue;
}
/*
Note: This calibration algorithm may try OSCCAL values of up to 192 even if
the optimum value is far below 192. It may therefore exceed the allowed clock
frequency of the CPU in low voltage designs!
You may replace this search algorithm with any other algorithm you like if
you have additional constraints such as a maximum CPU clock.
For version 5.x RC oscillators (those with a split range of 2x128 steps, e.g.
ATTiny25, ATTiny45, ATTiny85), it may be useful to search for the optimum in
both regions.
*/


void    hadUsbReset(void)
{
    calibrateOscillator();
    eeprom_write_byte(0, OSCCAL);   /* store the calibrated value in EEPROM */
}

/* ------------------------------------------------------------------------- */
/* --------------------------------- main ---------------------------------- */
/* ------------------------------------------------------------------------- */

int main(void)
{
uchar   i;
uchar   calibrationValue;

   wdt_enable(WDTO_1S);
    /* Even if you don't use the watchdog, turn it off here. On newer devices,
     * the status of the watchdog (on/off, period) is PRESERVED OVER RESET!
     */

    calibrationValue = eeprom_read_byte(0); /* calibration value from last time */
    if(calibrationValue != 0xff){
        OSCCAL = calibrationValue;
    }
   
   //odDebugInit();
    usbInit();
    usbDeviceDisconnect();  /* enforce re-enumeration, do this while interrupts are disabled! */
    i = 0;
    while(--i){             /* fake USB disconnect for > 250 ms */
        wdt_reset();
        _delay_ms(1);
    }
    usbDeviceConnect();



   /* turn on internal pull-up resistor for the switch */
    BUTTON_PORT |= _BV(BUTTON_BIT);

    timerInit();

    sei();

    for(;;){    /* main event loop */
        wdt_reset();
        usbPoll();

      /* A USB keypress cycle is defined as a scancode being present in a report, and
      then absent from a later report. To press and release the Caps Lock key, instead of
      holding it down, we need to send the report with the Caps Lock scancode and
      then an empty report. */
      
      if(usbInterruptIsReady() && reportCount < 2){ /* we can send another key */
           buildReport();
              usbSetInterrupt(reportBuffer, sizeof(reportBuffer));
           }
        checkButtonChange();
      timerPoll();
   }
      return 0;
}



Descriptors

Code: Select all

/* Name: usbconfig.h
 * Project: AVR USB driver
 * Author: Christian Starkjohann
 * Creation Date: 2007-06-23
 * Tabsize: 4
 * Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH
 * License: GNU GPL v2 (see License.txt) or proprietary (CommercialLicense.txt)
 * This Revision: $Id: usbconfig.h 537 2008-02-28 21:13:01Z cs $
 */

#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__

/* ---------------------------- Hardware Config ---------------------------- */

#define USB_CFG_IOPORTNAME      B
/* This is the port where the USB bus is connected. When you configure it to
 * "B", the registers PORTB, PINB and DDRB will be used.
 */
#define USB_CFG_DMINUS_BIT      0
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
 * This may be any bit in the port.
 */
#define USB_CFG_DPLUS_BIT       2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
 * This may be any bit in the port. Please note that D+ must also be connected
 * to interrupt pin INT0!
 */
#define USB_CFG_CLOCK_KHZ       (F_CPU/1000)
/* Clock rate of the AVR in MHz. Legal values are 12000, 16000 or 16500.
 * The 16.5 MHz version of the code requires no crystal, it tolerates +/- 1%
 * deviation from the nominal frequency. All other rates require a precision
 * of 2000 ppm and thus a crystal!
 * Default if not specified: 12 MHz
 */
 #define USB_CFG_CHECK_CRC       0
/* Define this to 1 if you want that the driver checks integrity of incoming
 * data packets (CRC checks). CRC checks cost quite a bit of code size and are
 * currently only available for 18 MHz crystal clock. You must choose
 * USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
 */

/* ----------------------- Optional Hardware Config ------------------------ */

/* #define USB_CFG_PULLUP_IOPORTNAME   D */
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
 * V+, you can connect and disconnect the device from firmware by calling
 * the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
 * This constant defines the port on which the pullup resistor is connected.
 */
/* #define USB_CFG_PULLUP_BIT          4 */
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
 * above) where the 1.5k pullup resistor is connected. See description
 * above for details.
 */

/* --------------------------- Functional Range ---------------------------- */

#define USB_CFG_HAVE_INTRIN_ENDPOINT    1
/* Define this to 1 if you want to compile a version with two endpoints: The
 * default control endpoint 0 and an interrupt-in endpoint 1.
 */
#define USB_CFG_HAVE_INTRIN_ENDPOINT3   0
/* Define this to 1 if you want to compile a version with three endpoints: The
 * default control endpoint 0, an interrupt-in endpoint 1 and an interrupt-in
 * endpoint 3. You must also enable endpoint 1 above.
 */
 #define USB_CFG_EP3_NUMBER              3
/* If the so-called endpoint 3 is used, it can now be configured to any other
 * endpoint number (except 0) with this macro. Default if undefined is 3.
 */
#define USB_INITIAL_DATATOKEN           USBPID_DATA1
/* The above macro defines the startup condition for data toggling on the
 * interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
 * Since the token is toggled BEFORE sending any data, the first packet is
 * sent with the oposite value of this configuration!
 */
#define USB_CFG_IMPLEMENT_HALT          0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
 * for endpoint 1 (interrupt endpoint). Although you may not need this feature,
 * it is required by the standard. We have made it a config option because it
 * bloats the code considerably.
 */
 #define USB_CFG_SUPPRESS_INTR_CODE      0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
 * want to send any data over them. If this macro is defined to 1, functions
 * usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
 * you need the interrupt-in endpoints in order to comply to an interface
 * (e.g. HID), but never want to send any data. This option saves a couple
 * of bytes in flash memory and the transmit buffers in RAM.
 */
#define USB_CFG_INTR_POLL_INTERVAL      10
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
 * interval. The value is in milliseconds and must not be less than 10 ms for
 * low speed devices.
 */
#define USB_CFG_IS_SELF_POWERED         0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
 * device is powered from the USB bus.
 */
#define USB_CFG_MAX_BUS_POWER           50
/* Set this variable to the maximum USB bus power consumption of your device.
 * The value is in milliamperes. [It will be divided by two since USB
 * communicates power requirements in units of 2 mA.]
 */
#define USB_CFG_IMPLEMENT_FN_WRITE      0
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
 * transfers. Set it to 0 if you don't need it and want to save a couple of
 * bytes.
 */
#define USB_CFG_IMPLEMENT_FN_READ       0
/* Set this to 1 if you need to send control replies which are generated
 * "on the fly" when usbFunctionRead() is called. If you only want to send
 * data from a static buffer, set it to 0 and return the data from
 * usbFunctionSetup(). This saves a couple of bytes.
 */
#define USB_CFG_IMPLEMENT_FN_WRITEOUT   0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoint 1.
 * You must implement the function usbFunctionWriteOut() which receives all
 * interrupt/bulk data sent to endpoint 1.
 */
#define USB_CFG_HAVE_FLOWCONTROL        0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
 * of the macros usbDisableAllRequests() and usbEnableAllRequests() in
 * usbdrv.h.
 */
 #define USB_CFG_LONG_TRANSFERS          0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
 * in a single control-in or control-out transfer. Note that the capability
 * for long transfers increases the driver size.
 */
/* #define USB_RX_USER_HOOK(data, len)     if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
 * defined, it's inserted at the beginning of received message processing.
 * If you eat the received message and don't want default processing to
 * proceed, do a return after doing your things. One possible application
 * (besides debugging) is to flash a status LED on each packet.
 */
#define USB_RESET_HOOK(resetStarts)     if(!resetStarts){hadUsbReset();}
/* This macro is a hook if you need to know when an USB RESET occurs. It has
 * one parameter which distinguishes between the start of RESET state and its
 * end.
 */
/* #define USB_SET_ADDRESS_HOOK()              hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
 * received.
 */
#define USB_COUNT_SOF                   0
/* define this macro to 1 if you need the global variable "usbSofCount" which
 * counts SOF packets. This feature requires that the hardware interrupt is
 * connected to D- instead of D+.
 */
 /*#ifndef __ASSEMBLER__
 * macro myAssemblerMacro
 *     in      YL, TCNT0
 *     sts     timer0Snapshot, YL
 *     endm
 * #endif
 * #define USB_SOF_HOOK                    myAssemblerMacro
 * This macro (if defined) is executed in the assembler module when a
 * Start Of Frame condition is detected. It is recommended to define it to
 * the name of an assembler macro which is defined here as well so that more
 * than one assembler instruction can be used. The macro may use the register
 * YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
 * immediately after an SOF pulse may be lost and must be retried by the host.
 * What can you do with this hook? Since the SOF signal occurs exactly every
 * 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
 * designs running on the internal RC oscillator.
 * Please note that Start Of Frame detection works only if D- is wired to the
 * interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
 */
#define USB_CFG_CHECK_DATA_TOGGLING     0
/* define this macro to 1 if you want to filter out duplicate data packets
 * sent by the host. Duplicates occur only as a consequence of communication
 * errors, when the host does not receive an ACK. Please note that you need to
 * implement the filtering yourself in usbFunctionWriteOut() and
 * usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
 * for each control- and out-endpoint to check for duplicate packets.
 */
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH   1
/* define this macro to 1 if you want the function usbMeasureFrameLength()
 * compiled in. This function can be used to calibrate the AVR's RC oscillator.
 */

/* -------------------------- Device Description --------------------------- */

#define  USB_CFG_VENDOR_ID       0x42, 0x42
/* USB vendor ID for the device, low byte first. If you have registered your
 * own Vendor ID, define it here. Otherwise you use obdev's free shared
 * VID/PID pair. Be sure to read USBID-License.txt for rules!
 * This template uses obdev's shared VID/PID pair for HIDs: 0x16c0/0x5df.
 * Use this VID/PID pair ONLY if you understand the implications!
 */
#define  USB_CFG_DEVICE_ID       0x31, 0xe1
/* This is the ID of the product, low byte first. It is interpreted in the
 * scope of the vendor ID. If you have registered your own VID with usb.org
 * or if you have licensed a PID from somebody else, define it here. Otherwise
 * you use obdev's free shared VID/PID pair. Be sure to read the rules in
 * USBID-License.txt!
 * This template uses obdev's shared VID/PID pair for HIDs: 0x16c0/0x5df.
 * Use this VID/PID pair ONLY if you understand the implications!
 */
#define USB_CFG_DEVICE_VERSION  0x00, 0x01
/* Version number of the device: Minor number first, then major number.
 */
#define USB_CFG_VENDOR_NAME     'T', 'h', 'e', ' ', 'B', 'u', 't', 't', 'o', 'n', '!'
#define USB_CFG_VENDOR_NAME_LEN 11
/* These two values define the vendor name returned by the USB device. The name
 * must be given as a list of characters under single quotes. The characters
 * are interpreted as Unicode (UTF-16) entities.
 * If you don't want a vendor name string, undefine these macros.
 * ALWAYS define a vendor name containing your Internet domain name if you use
 * obdev's free shared VID/PID pair. See the file USBID-License.txt for
 * details.
 */
#define USB_CFG_DEVICE_NAME     '1', '-', 'K', 'e', 'y', '-', 'K', 'e', 'y', 'b', 'o', 'a', 'r', 'd'
#define USB_CFG_DEVICE_NAME_LEN 14
/* Same as above for the device name. If you don't want a device name, undefine
 * the macros. See the file USBID-License.txt before you assign a name if you
 * use a shared VID/PID.
 */
/*#define USB_CFG_SERIAL_NUMBER   'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN   0 */
/* Same as above for the serial number. If you don't want a serial number,
 * undefine the macros.
 * It may be useful to provide the serial number through other means than at
 * compile time. See the section about descriptor properties below for how
 * to fine tune control over USB descriptors such as the string descriptor
 * for the serial number.
 */
#define USB_CFG_DEVICE_CLASS        0
#define USB_CFG_DEVICE_SUBCLASS     0
/* See USB specification if you want to conform to an existing device class.
 */
#define USB_CFG_INTERFACE_CLASS     3   /* HID */
#define USB_CFG_INTERFACE_SUBCLASS  0   /* no boot interface */
#define USB_CFG_INTERFACE_PROTOCOL  0   /* no protocol */
/* See USB specification if you want to conform to an existing device class or
 * protocol.
 */
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH    35  /* total length of report descriptor */
/* Define this to the length of the HID report descriptor, if you implement
 * an HID device. Otherwise don't define it or define it to 0.
 * Since this template defines a HID device, it must also specify a HID
 * report descriptor length. You must add a PROGMEM character array named
 * "usbHidReportDescriptor" to your code which contains the report descriptor.
 * Don't forget to keep the array and this define in sync!
 */

/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
 * This technique saves a couple of bytes in flash memory.
 */

/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
 * provide our own. These can be provided as (1) fixed length static data in
 * flash memory, (2) fixed length static data in RAM or (3) dynamically at
 * runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
 * information about this function.
 * Descriptor handling is configured through the descriptor's properties. If
 * no properties are defined or if they are 0, the default descriptor is used.
 * Possible properties are:
 *   + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
 *     at runtime via usbFunctionDescriptor().
 *   + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
 *     in static memory is in RAM, not in flash memory.
 *   + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
 *     the driver must know the descriptor's length. The descriptor itself is
 *     found at the address of a well known identifier (see below).
 * List of static descriptor names (must be declared PROGMEM if in flash):
 *   char usbDescriptorDevice[];
 *   char usbDescriptorConfiguration[];
 *   char usbDescriptorHidReport[];
 *   char usbDescriptorString0[];
 *   int usbDescriptorStringVendor[];
 *   int usbDescriptorStringDevice[];
 *   int usbDescriptorStringSerialNumber[];
 * Other descriptors can't be provided statically, they must be provided
 * dynamically at runtime.
 *
 * Descriptor properties are or-ed or added together, e.g.:
 * #define USB_CFG_DESCR_PROPS_DEVICE   (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
 *
 * The following descriptors are defined:
 *   USB_CFG_DESCR_PROPS_DEVICE
 *   USB_CFG_DESCR_PROPS_CONFIGURATION
 *   USB_CFG_DESCR_PROPS_STRINGS
 *   USB_CFG_DESCR_PROPS_STRING_0
 *   USB_CFG_DESCR_PROPS_STRING_VENDOR
 *   USB_CFG_DESCR_PROPS_STRING_PRODUCT
 *   USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
 *   USB_CFG_DESCR_PROPS_HID
 *   USB_CFG_DESCR_PROPS_HID_REPORT
 *   USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
 *
 */

#define USB_CFG_DESCR_PROPS_DEVICE                  0
#define USB_CFG_DESCR_PROPS_CONFIGURATION           0
#define USB_CFG_DESCR_PROPS_STRINGS                 0
#define USB_CFG_DESCR_PROPS_STRING_0                0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR           0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT          0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER    0
#define USB_CFG_DESCR_PROPS_HID                     0
#define USB_CFG_DESCR_PROPS_HID_REPORT              0
#define USB_CFG_DESCR_PROPS_UNKNOWN                 0

/* ----------------------- Optional MCU Description ------------------------ */

/* The following configurations have working defaults in usbdrv.h. You
 * usually don't need to set them explicitly. Only if you want to run
 * the driver on a device which is not yet supported or with a compiler
 * which is not fully supported (such as IAR C) or if you use a differnt
 * interrupt than INT0, you may have to define some of these.
 */
/* #define USB_INTR_CFG            MCUCR */
/* #define USB_INTR_CFG_SET        ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR        0 */
/* #define USB_INTR_ENABLE         GIMSK */
/* #define USB_INTR_ENABLE_BIT     INT0 */
/* #define USB_INTR_PENDING        GIFR */
/* #define USB_INTR_PENDING_BIT    INTF0 */
/* #define USB_INTR_VECTOR         SIG_INTERRUPT0 */

#endif /* __usbconfig_h_included__ */



This also fixes the problem where the first key was not sent

Note my current function is to lock the workstation with GUI-L in windows. I'm thinking of trying to implement the power button function and also the pcs power led which should both be available over hid although I'm not sure if I will need to also implement the boot protocol to do this

Post Reply