I've been trying to get the HID MOUSE example working from the v-usb package, but it's not working for me.
I have a ATmega162-16PU and I just can't establish an usb connection. My laptop says it's found "a unknown device". I've been working for days now to find the problem, but i just cant find it. it'll be great if someone could help me.(Maybe it's my fuses that are not set right, but i'm not so sure, since i already broken a ATMEGA32-16PU with the wrong fuses...)
Could someone check if my fuses are right and check the code? As I don't have much time left till my deadline...
Anyways Thanks!
This is a picture of my current breadboard, i'm trying to follow this guide(With the HID Bootloader), but no luck(The blue lines are the connectors for ISP programming):
I normally upload the .hex file with "Mysmallusb Light" and with the program: "myAVR_ProgTool"(ISP Programmer), as i don't know how to upload with Avrdude though STK500 with COM1 port(referring to the ISP programmer mentioned earlier).
This is my makefile
Code: Select all
# Name: Makefile
# Project: hid-mouse example
# Author: Christian Starkjohann
# Creation Date: 2008-04-07
# Tabsize: 4
# Copyright: (c) 2008 by OBJECTIVE DEVELOPMENT Software GmbH
# License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
# This Revision: $Id: Makefile 692 2008-11-07 15:07:40Z cs $
DEVICE = atmega162
F_CPU = 12000000 # in Hz
FUSE_L = 0xDF # see below for fuse values for particular devices
FUSE_H = 0x89
FUSE_E = 0xFB
AVRDUDE = avrdude -c usbasp -p $(DEVICE) # edit this line for your programmer
CFLAGS = -Iusbdrv -I. -DDEBUG_LEVEL=0
OBJECTS = usbdrv/usbdrv.o usbdrv/usbdrvasm.o usbdrv/oddebug.o main.o
COMPILE = avr-gcc -Wall -Os -DF_CPU=$(F_CPU) $(CFLAGS) -mmcu=$(DEVICE)
##############################################################################
# Fuse values for particular devices
##############################################################################
# If your device is not listed here, go to
# http://palmavr.sourceforge.net/cgi-bin/fc.cgi
# and choose options for external crystal clock and no clock divider
#
################################## ATMega8 ##################################
# ATMega8 FUSE_L (Fuse low byte):
# 0x9f = 1 0 0 1 1 1 1 1
# ^ ^ \ / \--+--/
# | | | +------- CKSEL 3..0 (external >8M crystal)
# | | +--------------- SUT 1..0 (crystal osc, BOD enabled)
# | +------------------ BODEN (BrownOut Detector enabled)
# +-------------------- BODLEVEL (2.7V)
# ATMega8 FUSE_H (Fuse high byte):
# 0xc9 = 1 1 0 0 1 0 0 1 <-- BOOTRST (boot reset vector at 0x0000)
# ^ ^ ^ ^ ^ ^ ^------ BOOTSZ0
# | | | | | +-------- BOOTSZ1
# | | | | + --------- EESAVE (don't preserve EEPROM over chip erase)
# | | | +-------------- CKOPT (full output swing)
# | | +---------------- SPIEN (allow serial programming)
# | +------------------ WDTON (WDT not always on)
# +-------------------- RSTDISBL (reset pin is enabled)
#
############################## ATMega48/88/168 ##############################
# ATMega*8 FUSE_L (Fuse low byte):
# 0xdf = 1 1 0 1 1 1 1 1
# ^ ^ \ / \--+--/
# | | | +------- CKSEL 3..0 (external >8M crystal)
# | | +--------------- SUT 1..0 (crystal osc, BOD enabled)
# | +------------------ CKOUT (if 0: Clock output enabled)
# +-------------------- CKDIV8 (if 0: divide by 8)
# ATMega*8 FUSE_H (Fuse high byte):
# 0xde = 1 1 0 1 1 1 1 0
# ^ ^ ^ ^ ^ \-+-/
# | | | | | +------ BODLEVEL 0..2 (110 = 1.8 V)
# | | | | + --------- EESAVE (preserve EEPROM over chip erase)
# | | | +-------------- WDTON (if 0: watchdog always on)
# | | +---------------- SPIEN (allow serial programming)
# | +------------------ DWEN (debug wire enable)
# +-------------------- RSTDISBL (reset pin is enabled)
#
############################## ATTiny25/45/85 ###############################
# ATMega*5 FUSE_L (Fuse low byte):
# 0xef = 1 1 1 0 1 1 1 1
# ^ ^ \+/ \--+--/
# | | | +------- CKSEL 3..0 (clock selection -> crystal @ 12 MHz)
# | | +--------------- SUT 1..0 (BOD enabled, fast rising power)
# | +------------------ CKOUT (clock output on CKOUT pin -> disabled)
# +-------------------- CKDIV8 (divide clock by 8 -> don't divide)
# ATMega*5 FUSE_H (Fuse high byte):
# 0xdd = 1 1 0 1 1 1 0 1
# ^ ^ ^ ^ ^ \-+-/
# | | | | | +------ BODLEVEL 2..0 (brownout trigger level -> 2.7V)
# | | | | +---------- EESAVE (preserve EEPROM on Chip Erase -> not preserved)
# | | | +-------------- WDTON (watchdog timer always on -> disable)
# | | +---------------- SPIEN (enable serial programming -> enabled)
# | +------------------ DWEN (debug wire enable)
# +-------------------- RSTDISBL (disable external reset -> enabled)
#
################################ ATTiny2313 #################################
# ATTiny2313 FUSE_L (Fuse low byte):
# 0xef = 1 1 1 0 1 1 1 1
# ^ ^ \+/ \--+--/
# | | | +------- CKSEL 3..0 (clock selection -> crystal @ 12 MHz)
# | | +--------------- SUT 1..0 (BOD enabled, fast rising power)
# | +------------------ CKOUT (clock output on CKOUT pin -> disabled)
# +-------------------- CKDIV8 (divide clock by 8 -> don't divide)
# ATTiny2313 FUSE_H (Fuse high byte):
# 0xdb = 1 1 0 1 1 0 1 1
# ^ ^ ^ ^ \-+-/ ^
# | | | | | +---- RSTDISBL (disable external reset -> enabled)
# | | | | +-------- BODLEVEL 2..0 (brownout trigger level -> 2.7V)
# | | | +-------------- WDTON (watchdog timer always on -> disable)
# | | +---------------- SPIEN (enable serial programming -> enabled)
# | +------------------ EESAVE (preserve EEPROM on Chip Erase -> not preserved)
# +-------------------- DWEN (debug wire enable)
# symbolic targets:
help:
@echo "This Makefile has no default rule. Use one of the following:"
@echo "make hex ....... to build main.hex"
@echo "make program ... to flash fuses and firmware"
@echo "make fuse ...... to flash the fuses"
@echo "make flash ..... to flash the firmware (use this on metaboard)"
@echo "make clean ..... to delete objects and hex file"
all: hex
hex: main.hex
program: flash fuse
# rule for programming fuse bits:
fuse:
@[ "$(FUSE_H)" != "" -a "$(FUSE_L)" != "" ] || \
{ echo "*** Edit Makefile and choose values for FUSE_L and FUSE_H!"; exit 1; }
$(AVRDUDE) -U hfuse:w:$(FUSE_H):m -U lfuse:w:$(FUSE_L):m
# rule for uploading firmware:
flash: main.hex
$(AVRDUDE) -U flash:w:main.hex:i
# rule for deleting dependent files (those which can be built by Make):
clean:
rm -f main.hex main.lst main.obj main.cof main.list main.map main.eep.hex main.elf *.o usbdrv/*.o main.s usbdrv/oddebug.s usbdrv/usbdrv.s
# Generic rule for compiling C files:
.c.o:
$(COMPILE) -c $< -o $@
# Generic rule for assembling Assembler source files:
.S.o:
$(COMPILE) -x assembler-with-cpp -c $< -o $@
# "-x assembler-with-cpp" should not be necessary since this is the default
# file type for the .S (with capital S) extension. However, upper case
# characters are not always preserved on Windows. To ensure WinAVR
# compatibility define the file type manually.
# Generic rule for compiling C to assembler, used for debugging only.
.c.s:
$(COMPILE) -S $< -o $@
# file targets:
# Since we don't want to ship the driver multipe times, we copy it into this project:
usbdrv:
cp -r ../../../usbdrv .
main.elf: usbdrv $(OBJECTS) # usbdrv dependency only needed because we copy it
$(COMPILE) -o main.elf $(OBJECTS)
main.hex: main.elf
rm -f main.hex main.eep.hex
avr-objcopy -j .text -j .data -O ihex main.elf main.hex
avr-size main.hex
# debugging targets:
disasm: main.elf
avr-objdump -d main.elf
cpp:
$(COMPILE) -E main.c
This is my usbconfig.h
Code: Select all
/* Name: usbconfig.h
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
* Author: Christian Starkjohann
* Creation Date: 2005-04-01
* Tabsize: 4
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
* This Revision: $Id: usbconfig-prototype.h 785 2010-05-30 17:57:07Z cs $
*/
#ifndef __usbconfig_h_included__
#define __usbconfig_h_included__
/*
General Description:
This file is an example configuration (with inline documentation) for the USB
driver. It configures V-USB for USB D+ connected to Port D bit 2 (which is
also hardware interrupt 0 on many devices) and USB D- to Port D bit 4. You may
wire the lines to any other port, as long as D+ is also wired to INT0 (or any
other hardware interrupt, as long as it is the highest level interrupt, see
section at the end of this file).
*/
/* ---------------------------- Hardware Config ---------------------------- */
#define USB_CFG_IOPORTNAME D
/* This is the port where the USB bus is connected. When you configure it to
* "B", the registers PORTB, PINB and DDRB will be used.
*/
#define USB_CFG_DMINUS_BIT 3
/* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected.
* This may be any bit in the port.
*/
#define USB_CFG_DPLUS_BIT 2
/* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected.
* This may be any bit in the port. Please note that D+ must also be connected
* to interrupt pin INT0! [You can also use other interrupts, see section
* "Optional MCU Description" below, or you can connect D- to the interrupt, as
* it is required if you use the USB_COUNT_SOF feature. If you use D- for the
* interrupt, the USB interrupt will also be triggered at Start-Of-Frame
* markers every millisecond.]
*/
#define USB_CFG_CLOCK_KHZ (F_CPU/1000)
/* Clock rate of the AVR in kHz. Legal values are 12000, 12800, 15000, 16000,
* 16500, 18000 and 20000. The 12.8 MHz and 16.5 MHz versions of the code
* require no crystal, they tolerate +/- 1% deviation from the nominal
* frequency. All other rates require a precision of 2000 ppm and thus a
* crystal!
* Since F_CPU should be defined to your actual clock rate anyway, you should
* not need to modify this setting.
*/
#define USB_CFG_CHECK_CRC 0
/* Define this to 1 if you want that the driver checks integrity of incoming
* data packets (CRC checks). CRC checks cost quite a bit of code size and are
* currently only available for 18 MHz crystal clock. You must choose
* USB_CFG_CLOCK_KHZ = 18000 if you enable this option.
*/
/* ----------------------- Optional Hardware Config ------------------------ */
#define USB_CFG_PULLUP_IOPORTNAME D
/* If you connect the 1.5k pullup resistor from D- to a port pin instead of
* V+, you can connect and disconnect the device from firmware by calling
* the macros usbDeviceConnect() and usbDeviceDisconnect() (see usbdrv.h).
* This constant defines the port on which the pullup resistor is connected.
*/
#define USB_CFG_PULLUP_BIT 4
/* This constant defines the bit number in USB_CFG_PULLUP_IOPORT (defined
* above) where the 1.5k pullup resistor is connected. See description
* above for details.
*/
/* --------------------------- Functional Range ---------------------------- */
#define USB_CFG_HAVE_INTRIN_ENDPOINT 1
/* Define this to 1 if you want to compile a version with two endpoints: The
* default control endpoint 0 and an interrupt-in endpoint (any other endpoint
* number).
*/
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
/* Define this to 1 if you want to compile a version with three endpoints: The
* default control endpoint 0, an interrupt-in endpoint 3 (or the number
* configured below) and a catch-all default interrupt-in endpoint as above.
* You must also define USB_CFG_HAVE_INTRIN_ENDPOINT to 1 for this feature.
*/
#define USB_CFG_EP3_NUMBER 3
/* If the so-called endpoint 3 is used, it can now be configured to any other
* endpoint number (except 0) with this macro. Default if undefined is 3.
*/
/* #define USB_INITIAL_DATATOKEN USBPID_DATA1 */
/* The above macro defines the startup condition for data toggling on the
* interrupt/bulk endpoints 1 and 3. Defaults to USBPID_DATA1.
* Since the token is toggled BEFORE sending any data, the first packet is
* sent with the oposite value of this configuration!
*/
#define USB_CFG_IMPLEMENT_HALT 0
/* Define this to 1 if you also want to implement the ENDPOINT_HALT feature
* for endpoint 1 (interrupt endpoint). Although you may not need this feature,
* it is required by the standard. We have made it a config option because it
* bloats the code considerably.
*/
#define USB_CFG_SUPPRESS_INTR_CODE 0
/* Define this to 1 if you want to declare interrupt-in endpoints, but don't
* want to send any data over them. If this macro is defined to 1, functions
* usbSetInterrupt() and usbSetInterrupt3() are omitted. This is useful if
* you need the interrupt-in endpoints in order to comply to an interface
* (e.g. HID), but never want to send any data. This option saves a couple
* of bytes in flash memory and the transmit buffers in RAM.
*/
#define USB_CFG_INTR_POLL_INTERVAL 100
/* If you compile a version with endpoint 1 (interrupt-in), this is the poll
* interval. The value is in milliseconds and must not be less than 10 ms for
* low speed devices.
*/
#define USB_CFG_IS_SELF_POWERED 0
/* Define this to 1 if the device has its own power supply. Set it to 0 if the
* device is powered from the USB bus.
*/
#define USB_CFG_MAX_BUS_POWER 20
/* Set this variable to the maximum USB bus power consumption of your device.
* The value is in milliamperes. [It will be divided by two since USB
* communicates power requirements in units of 2 mA.]
*/
#define USB_CFG_IMPLEMENT_FN_WRITE 0
/* Set this to 1 if you want usbFunctionWrite() to be called for control-out
* transfers. Set it to 0 if you don't need it and want to save a couple of
* bytes.
*/
#define USB_CFG_IMPLEMENT_FN_READ 0
/* Set this to 1 if you need to send control replies which are generated
* "on the fly" when usbFunctionRead() is called. If you only want to send
* data from a static buffer, set it to 0 and return the data from
* usbFunctionSetup(). This saves a couple of bytes.
*/
#define USB_CFG_IMPLEMENT_FN_WRITEOUT 0
/* Define this to 1 if you want to use interrupt-out (or bulk out) endpoints.
* You must implement the function usbFunctionWriteOut() which receives all
* interrupt/bulk data sent to any endpoint other than 0. The endpoint number
* can be found in 'usbRxToken'.
*/
#define USB_CFG_HAVE_FLOWCONTROL 0
/* Define this to 1 if you want flowcontrol over USB data. See the definition
* of the macros usbDisableAllRequests() and usbEnableAllRequests() in
* usbdrv.h.
*/
#define USB_CFG_DRIVER_FLASH_PAGE 0
/* If the device has more than 64 kBytes of flash, define this to the 64 k page
* where the driver's constants (descriptors) are located. Or in other words:
* Define this to 1 for boot loaders on the ATMega128.
*/
#define USB_CFG_LONG_TRANSFERS 0
/* Define this to 1 if you want to send/receive blocks of more than 254 bytes
* in a single control-in or control-out transfer. Note that the capability
* for long transfers increases the driver size.
*/
/* #define USB_RX_USER_HOOK(data, len) if(usbRxToken == (uchar)USBPID_SETUP) blinkLED(); */
/* This macro is a hook if you want to do unconventional things. If it is
* defined, it's inserted at the beginning of received message processing.
* If you eat the received message and don't want default processing to
* proceed, do a return after doing your things. One possible application
* (besides debugging) is to flash a status LED on each packet.
*/
/* #define USB_RESET_HOOK(resetStarts) if(!resetStarts){hadUsbReset();} */
/* This macro is a hook if you need to know when an USB RESET occurs. It has
* one parameter which distinguishes between the start of RESET state and its
* end.
*/
/* #define USB_SET_ADDRESS_HOOK() hadAddressAssigned(); */
/* This macro (if defined) is executed when a USB SET_ADDRESS request was
* received.
*/
#define USB_COUNT_SOF 0
/* define this macro to 1 if you need the global variable "usbSofCount" which
* counts SOF packets. This feature requires that the hardware interrupt is
* connected to D- instead of D+.
*/
/* #ifdef __ASSEMBLER__
* macro myAssemblerMacro
* in YL, TCNT0
* sts timer0Snapshot, YL
* endm
* #endif
* #define USB_SOF_HOOK myAssemblerMacro
* This macro (if defined) is executed in the assembler module when a
* Start Of Frame condition is detected. It is recommended to define it to
* the name of an assembler macro which is defined here as well so that more
* than one assembler instruction can be used. The macro may use the register
* YL and modify SREG. If it lasts longer than a couple of cycles, USB messages
* immediately after an SOF pulse may be lost and must be retried by the host.
* What can you do with this hook? Since the SOF signal occurs exactly every
* 1 ms (unless the host is in sleep mode), you can use it to tune OSCCAL in
* designs running on the internal RC oscillator.
* Please note that Start Of Frame detection works only if D- is wired to the
* interrupt, not D+. THIS IS DIFFERENT THAN MOST EXAMPLES!
*/
#define USB_CFG_CHECK_DATA_TOGGLING 0
/* define this macro to 1 if you want to filter out duplicate data packets
* sent by the host. Duplicates occur only as a consequence of communication
* errors, when the host does not receive an ACK. Please note that you need to
* implement the filtering yourself in usbFunctionWriteOut() and
* usbFunctionWrite(). Use the global usbCurrentDataToken and a static variable
* for each control- and out-endpoint to check for duplicate packets.
*/
#define USB_CFG_HAVE_MEASURE_FRAME_LENGTH 0
/* define this macro to 1 if you want the function usbMeasureFrameLength()
* compiled in. This function can be used to calibrate the AVR's RC oscillator.
*/
#define USB_USE_FAST_CRC 0
/* The assembler module has two implementations for the CRC algorithm. One is
* faster, the other is smaller. This CRC routine is only used for transmitted
* messages where timing is not critical. The faster routine needs 31 cycles
* per byte while the smaller one needs 61 to 69 cycles. The faster routine
* may be worth the 32 bytes bigger code size if you transmit lots of data and
* run the AVR close to its limit.
*/
/* -------------------------- Device Description --------------------------- */
#define USB_CFG_VENDOR_ID 0xc0, 0x16 /* = 0x16c0 = 5824 = voti.nl */
/* USB vendor ID for the device, low byte first. If you have registered your
* own Vendor ID, define it here. Otherwise you may use one of obdev's free
* shared VID/PID pairs. Be sure to read USB-IDs-for-free.txt for rules!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_ID 0xe8, 0x03 /* VOTI's lab use PID */
/* This is the ID of the product, low byte first. It is interpreted in the
* scope of the vendor ID. If you have registered your own VID with usb.org
* or if you have licensed a PID from somebody else, define it here. Otherwise
* you may use one of obdev's free shared VID/PID pairs. See the file
* USB-IDs-for-free.txt for details!
* *** IMPORTANT NOTE ***
* This template uses obdev's shared VID/PID pair for Vendor Class devices
* with libusb: 0x16c0/0x5dc. Use this VID/PID pair ONLY if you understand
* the implications!
*/
#define USB_CFG_DEVICE_VERSION 0x00, 0x01
/* Version number of the device: Minor number first, then major number.
*/
#define USB_CFG_VENDOR_NAME 'o', 'b', 'd', 'e', 'v', '.', 'a', 't'
#define USB_CFG_VENDOR_NAME_LEN 8
/* These two values define the vendor name returned by the USB device. The name
* must be given as a list of characters under single quotes. The characters
* are interpreted as Unicode (UTF-16) entities.
* If you don't want a vendor name string, undefine these macros.
* ALWAYS define a vendor name containing your Internet domain name if you use
* obdev's free shared VID/PID pair. See the file USB-IDs-for-free.txt for
* details.
*/
#define USB_CFG_DEVICE_NAME 'M', 'o', 'u', 's', 'e'
#define USB_CFG_DEVICE_NAME_LEN 5
/* Same as above for the device name. If you don't want a device name, undefine
* the macros. See the file USB-IDs-for-free.txt before you assign a name if
* you use a shared VID/PID.
*/
/*#define USB_CFG_SERIAL_NUMBER 'N', 'o', 'n', 'e' */
/*#define USB_CFG_SERIAL_NUMBER_LEN 0 */
/* Same as above for the serial number. If you don't want a serial number,
* undefine the macros.
* It may be useful to provide the serial number through other means than at
* compile time. See the section about descriptor properties below for how
* to fine tune control over USB descriptors such as the string descriptor
* for the serial number.
*/
#define USB_CFG_DEVICE_CLASS 0
#define USB_CFG_DEVICE_SUBCLASS 0
/* See USB specification if you want to conform to an existing device class.
* Class 0xff is "vendor specific".
*/
#define USB_CFG_INTERFACE_CLASS 3
#define USB_CFG_INTERFACE_SUBCLASS 0
#define USB_CFG_INTERFACE_PROTOCOL 0
/* See USB specification if you want to conform to an existing device class or
* protocol. The following classes must be set at interface level:
* HID class is 3, no subclass and protocol required (but may be useful!)
* CDC class is 2, use subclass 2 and protocol 1 for ACM
*/
#define USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH 52
/* Define this to the length of the HID report descriptor, if you implement
* an HID device. Otherwise don't define it or define it to 0.
* If you use this define, you must add a PROGMEM character array named
* "usbHidReportDescriptor" to your code which contains the report descriptor.
* Don't forget to keep the array and this define in sync!
*/
/* #define USB_PUBLIC static */
/* Use the define above if you #include usbdrv.c instead of linking against it.
* This technique saves a couple of bytes in flash memory.
*/
/* ------------------- Fine Control over USB Descriptors ------------------- */
/* If you don't want to use the driver's default USB descriptors, you can
* provide our own. These can be provided as (1) fixed length static data in
* flash memory, (2) fixed length static data in RAM or (3) dynamically at
* runtime in the function usbFunctionDescriptor(). See usbdrv.h for more
* information about this function.
* Descriptor handling is configured through the descriptor's properties. If
* no properties are defined or if they are 0, the default descriptor is used.
* Possible properties are:
* + USB_PROP_IS_DYNAMIC: The data for the descriptor should be fetched
* at runtime via usbFunctionDescriptor(). If the usbMsgPtr mechanism is
* used, the data is in FLASH by default. Add property USB_PROP_IS_RAM if
* you want RAM pointers.
* + USB_PROP_IS_RAM: The data returned by usbFunctionDescriptor() or found
* in static memory is in RAM, not in flash memory.
* + USB_PROP_LENGTH(len): If the data is in static memory (RAM or flash),
* the driver must know the descriptor's length. The descriptor itself is
* found at the address of a well known identifier (see below).
* List of static descriptor names (must be declared PROGMEM if in flash):
* char usbDescriptorDevice[];
* char usbDescriptorConfiguration[];
* char usbDescriptorHidReport[];
* char usbDescriptorString0[];
* int usbDescriptorStringVendor[];
* int usbDescriptorStringDevice[];
* int usbDescriptorStringSerialNumber[];
* Other descriptors can't be provided statically, they must be provided
* dynamically at runtime.
*
* Descriptor properties are or-ed or added together, e.g.:
* #define USB_CFG_DESCR_PROPS_DEVICE (USB_PROP_IS_RAM | USB_PROP_LENGTH(18))
*
* The following descriptors are defined:
* USB_CFG_DESCR_PROPS_DEVICE
* USB_CFG_DESCR_PROPS_CONFIGURATION
* USB_CFG_DESCR_PROPS_STRINGS
* USB_CFG_DESCR_PROPS_STRING_0
* USB_CFG_DESCR_PROPS_STRING_VENDOR
* USB_CFG_DESCR_PROPS_STRING_PRODUCT
* USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
* USB_CFG_DESCR_PROPS_HID
* USB_CFG_DESCR_PROPS_HID_REPORT
* USB_CFG_DESCR_PROPS_UNKNOWN (for all descriptors not handled by the driver)
*
* Note about string descriptors: String descriptors are not just strings, they
* are Unicode strings prefixed with a 2 byte header. Example:
* int serialNumberDescriptor[] = {
* USB_STRING_DESCRIPTOR_HEADER(6),
* 'S', 'e', 'r', 'i', 'a', 'l'
* };
*/
#define USB_CFG_DESCR_PROPS_DEVICE 0
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
#define USB_CFG_DESCR_PROPS_STRINGS 0
#define USB_CFG_DESCR_PROPS_STRING_0 0
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
#define USB_CFG_DESCR_PROPS_HID 0
#define USB_CFG_DESCR_PROPS_HID_REPORT 0
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
/* ----------------------- Optional MCU Description ------------------------ */
/* The following configurations have working defaults in usbdrv.h. You
* usually don't need to set them explicitly. Only if you want to run
* the driver on a device which is not yet supported or with a compiler
* which is not fully supported (such as IAR C) or if you use a differnt
* interrupt than INT0, you may have to define some of these.
*/
/* #define USB_INTR_CFG MCUCR */
/* #define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) */
/* #define USB_INTR_CFG_CLR 0 */
/* #define USB_INTR_ENABLE GIMSK */
/* #define USB_INTR_ENABLE_BIT INT0 */
/* #define USB_INTR_PENDING GIFR */
/* #define USB_INTR_PENDING_BIT INTF0 */
/* #define USB_INTR_VECTOR INT0_vect */
#endif /* __usbconfig_h_included__ */